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It is customary when computing +evibrational transitions in molecules to invoke the Be@ppenheimer
separation between nuclear and electronic motion. However, it is known from accurate calculatiofis on H
and H that the first-order (diagonal adiabatic) and second-order (nonadiabatic) corrections are not negligible
and are both important. In the present work, we have made an ab initio implementation of the Bunker and
Moss formalism for the nonadiabatic correction and applied it f@ht HO. From comparison to accurate
calculations for H, we find that we can obtain good results for the nonadiabatic correction using Cl singles
to treat the electronically excited states if we scale the results, but we must go beyond the SCF approximation
to obtain an accurate diagonal adiabatic correction. R, kve find that the first-order correction is more
important than the second-order correction for bending energy levels, but the second-order correction is more
important than the first-order correction for stretching energy levels. The correction to rotational levels is
also significant. Thus, first- and second-order corrections are vital for accurate ab initio predictions of transition
frequencies.

I. Introduction proximation once the correction functions are known. This is
much more practical than nonperturbative methoAithough

When we solve the nonrelativistic Scklinger equation for . . . S
they did not do so, their expression for the correction involves

the bound states of a molecule, the first stage in the calculation s - .
is to fix the nuclear positions, removing all terms in the quantities that can be explicitly c_alculated from properties pf
Hamiltonian which involve the nuclear masses. and then to solve excited electronic state wave functions. We have recently carried
for the electronic energy. This level of approximation is called ?Ut thl? first gb r'{"t'o dutllt;zatlon of the Bunker Iand Mlo;sb
the clamped nuclei approximation. We then allow the nuclei to obrtrna |sdmf an +S ogveHUtga}t \:ﬁry accur?te risu s cotu d €
move, subject to the forces which are a result of the electronic © a'Be_ _t_or HI ?nt' t. nlt' Ie ptresen \t/vor i ;Vmed ex(;en
energy determined from the clamped nuclei approximation. This ourab Initio caiculations to muiti€lectron Systems; HO.

is the customary BorOppenheimer (BO) approximation. At We will use H to test our procedures for a multielectron system,
the next level of refinement, we retain the electronic wave SMC€ accurate resylt§ exist fop,fand then use bO to make
functions from the clamped nuclei approximation, but we use the first ever_p_redlct|on of the nonadiabatic correction for a
as the electronic energy the expectation value of the full SYSem containing more than two electrons. e
Hamiltonian. This level of approximation is called the adiabatic The BODC for H—’Q has been computed by several workers.
approximation, and the difference between the two electronic All these calculations were at the SCF level. Bardo and
energies is the BorrOppenheimer diagonal correction (BODC). Wolfsber@ used normal coordinates and the Eckar'_[ cond|t|on§
This is the first-order correction to the Bor@ppenheimer to separate out rotational and center-of-mass motion, and this
potential energy surface (PES) and results only in a mass.- resulted in very complex expressions for the. BODC. Handy and
dependent change to the PES. The ultimate level of refinementC0-WorkerS used a much simplier expression for the BODC
is to couple the electron and nuclear motion. In principle, this that they prop_osed which does not mvolve_mternal coordinates
will give the exact result, and the difference between the results O the separation of the center-of-mass motion. Subsequent work

obtained at this level and the adiabatic approximation is the PY Kutzelnigg has put the Handy formula on much firmer
nonadiabatic correction. grounds. Wolfsberg and Handy only considered the BODC in

The BODC is fairly easy to implement, for it just results in the vicinity of the minimum, while Tennyson and co-workers
a change to the PES. Formally, the nonadiabatic correction isUS€d the Handy formula to produce a BODC surface.
much more difficult to compute, for explicit coupling to myriad I the course of this work, we will compute the BODC surface
of electronic states is involved, and the PES loses its signifi- at several different levels of electronic structure theory. We h_ave
cance. A significant advance was the derivation of an effective US€d both the Handy formula and the formula we have derived
Hamiltonian for the nonadiabatic correction by Bunker and N the present work, and we obtain identical results. We also
Moss! In that work, they gave the procedure for deriving a compare our SCF BODC to that computed by Tennyson and
correction to the BorrOppenheimer, single-PES Hamiltonian  C0-workers and find very similar results. However, we find that
that includes the nonadiabatic correction, accurate to second!t i Necessary to go beyond the SCF approximation to achieve
order in perturbation theory. This makes the calculation of the &ccurate results for the BODC.

nonadiabatic correction essentially the same as the BO ap- [N the present work, we have implemented the simplest
possible representation of the electronically excited states,

T Part of the special issue “Aron Kuppermann Festschrift”. namely, single-excitation Cl. We find that although this level
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of calculation does not give results of quantitative accuracy, a Here M "¢ js the total nuclear mass, anti.m, etc., are the

simple scaling greatly improves the reliability of the results.
This makes this a very cost-effective calculation.
II. Derivation

Bunker and Moss have given a derivation for diatorhansd
for H,O as well? However, since we explicitly evaluate the

Cartesian coordinates of the nuclear center of mass.

We next form a set of relative electronic coordinates. We
take theM + 1 vectors consisting of the electronic positions
and the nuclear center-of-mass position and fdinvectors
describing the electron positions relative to the nuclear center
of mass and one vector describing the position of the center of

correction functions, it is valuable to treat some of the steps in mass of the nuclei and electrons. Under this transformation, we

the derivation differently. Hence, we will give our derivation
for polyatomics. Another difference with most previous workers

is that we solve the electronic structure problem for the excited

have

TN = TNy Py o ()

states separately for each isotopomer. This may not be the most
efficient procedure but seems to be the most natural. For where 77enm is the same as’®, except the origin of the

diatomics, see our work onJ.3
We now explicitly give the kinetic energy operator. We
assume that there ai¢ nuclei andM electrons. In terms of

space-fixed Cartesian coordinates, the kinetic energy operator

is given by
T=gM 4 7° Q)
The nuclear kinetic energy operator is
RNl 9
gMo= — N —|—+ —+— (2)
2&m|ox?  ay? 9z

wherem is the mass of the nuclgiandX;, etc., are the Cartesian
coordinates. The electron kinetic energy operator is

& &
+
e ez’

®3)

electronic coordinates is the center of mass of the nutleise
coordinates will be calle®"°", etc—and

h2 32 82
TP = + +
2M nuc% axie anT’B)(je ncm aYIe ncnbY}e ncm
82
e I"ICI'TB € NCl (7)
0Z; " Z;

is the mass polarization term, and®™ is the kinetic energy
operator for the total center of mass. At this point, the electron
Cartesians have their origin at the nuclear center of mass but
are oriented with respect to the space-fixed frame of reference.

We now transform the electron Cartesians to the nuclear body
fixed frame of reference. This potentially only effects®"cm
and ¥™P. Since these operators are expressed in terms of
Cartesians, the transformed operators will have the same form,
except the Cartesians are now referenced with respect to the
nuclear body fixed frame of reference. The electronic wave

We reiterate that at this point, the Cartesian coordinates of the function is expaLnded in terms of the basis functions
nuclei and electrons are in the space-fixed frame of reference.ZMLllinLML(Xe”°"_)DﬁAZM'L(aLB,_ﬂLB,VLB)_, where the valueXe®nem
Now we assume that we form new vectors describing the are the collective electronic coordinates.

nuclear positions, with the only restriction being that Nié&

Finally, we transform the electremuclear wave function to

vector gives the center of mass of the nuclei, and that the centerthe total angular momentum representation. This is done because
of mass is decoupled from the remaining nuclear vectors. We the ro-vib—electronic wave function is expanded in terms of

then assume that some sort of vibrationtational analysis is
carried out on the firdil — 1 vectors, so that the nuclear kinetic
energy operator takes the form

m

whereGy, is a geometry-dependent coefficiedt,is an operator
for vibration if | = 1 to 3\ — 6, for rotation ifl = 3N — 5 to

3N — 3, and for unity ifl = 3N — 2. For a specific example of
this, see the text after eq 23. Thenabrational wave function

is expanded in terms of basis functions suchfag(X,Xs)

x Dy (oBBy'8), where x is a collection of all the
vibrational coordinates exceps, X, is the bending vibrational
coordinate used to define the nuclear body fixed axespahd
BB, andy'B are the Euler angles determined from the nuclear
body fixed frame of reference. The ind&k on f specifies the
behavior near linear geometriésy, O xa"R’z), andv specifies
the remaining quantum numbers. The final quantity, for the
nuclear center of mass, is given by

32

" azﬁcJ )

[ & 9
nu 2 + 2
oM™, O,

ncm

grnem — _

basis functions containing the producfyy, Dy . If we
make the substitution

(R (L)
DMRM'R DMLM'L

(RMELM, [RLIM)(RMLM; [RLIM)DR,, (8)

IM;M'y

and then transform to a simple product basis in the usualay,
we obtain a new basis function

f, K—ML(X1Xb)7/)nLML(Xe ncrr)l:)fgrleJ a® B 0) 9)

The Hamiltonian matrix will be diagonal id and M;. In
practical calculations, one deals with electronic functions which
are not eigenfunctions af andM,, which means that thig v,
must be made independent M. In the present work, we do
this by using a basis function having the indé& This
substitution is only questionable near linear geometries where
the index controls the limiting behavior and is appropriate for
the lowest electronic state haviiMy = 0. In general, the lowest
electronic state at linear geometries will dependxgrso the
situation becomes complicated. We will assume that the fine
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details at linear geometries are not important. Since these basis The result of the derivation of the nonadiabatic correction
functions no longer are labeled Bywe need to use the relation  given by Bunker and Mosss that, to the second order, the

R R R Hamiltonian operator should be modified by adding the cor-
R,=J, — L, (10) rection

in eq 4 to evaluate matrix elements. Finally, we parity adapt [ , ,

the basis functions in the usual waly. _Z){ O[H '[nn|SO0- [O|Snn[H "0} (14)
In summary, the exact nonrelativistic kinetic energy operator e

now takes the form

where
T— o7hudd srencm_  s-mp g7tm
T= TN 4 gy TP 4 7 (11) [0]SInC= D]S/nCH /S0 (15)
where ! - |
O[SINC= +5[Ag, * OH {Ind, (16)
7= 56,00, (12)
A O|H {InO=
. 1 -1 ] ! -1
with R, being replaced by, — Lo in O, wherel = 3N — 5 E{AOn [O/H |_4InEW,] + [O[H |_;InCMW]A,, T (A7)
to 3N — 3.
The total center of mass is decoupled from all other degreesyith H o= H "andApn = Wo — Wh. The symbols 0 andh
of freedom and is henceforth dropped. denote electronic states, with being 0 the ground electronic state,

It should be noted that when carrying out the electronic and [J0 denotes integration over electronic coordinates. In
structure calculations for particular relative positions of the principle, the sum over excited statesvill include all bound
nuclei, the nuclear centers are not to be placed arbitrarily, but electronic excited states as well as all continuum electronic
rather, the center of mass of the nuclei is at the origin, and the states. In practice, however, we solve the electronic structure
orientation is given by the definition of the nuclear body fixed problem using a finite basis, so all excited states are descrete
frame of reference. This means that new calculations are gnd one can explicitly carry out the sum. In principle, one needs
required if one considers different isotopes of any nuclei. The much larger basis expansions to describe excited states than
total energy is not affected by shifting and rotating the nuclear just the ground state; however, since all matrix elements involve
positions, but most of the matrix elements of the operators the projection of the excited states on an operator acting on the
required for the nonadiabatic correction are affected by theseground state, as we will see below, it is sufficient to be able to

changes. This should be contrasted with the Handy method foraccurately describe the ground state and its response to the
computing the BODC.There one takes derivatives with respect operators.

to a given nuclear position, with the positions of the other nuclei |t js straightforward to show that we can write
being fixed. Thus, the derivatives are independent of mass. There
are two reasons favoring the present method. The first is that OH '|nC= of p™ (18)
all calculations for triatomics can be carried out usiGg Z H
symmetry while the Handy method requires no symmetry for
some of the derivatives. The second is the formation of the gng
nonadiabatic correction. In contrast to the BODC, which is
independent of coordinate system, the nonadiabatic correction M[H '|0r= o) (19)
functions are manifestly different for different coordinate Z -
systems. Thus, the generalization of the Handy method to
e_valuatt_e the nonadiabatic corrections W!|| involve using deriva- \;ith b given below. We then find that
tives with respect to Cartesian coordinates to generate the
various matrix elements which we determine directly below.
This has the advantage that the Cartesian derivatives are
independent of the masses, but there will be intermediate
expressions that are more complicated. Note that if one is going | S0C= —i Zb,” AOn‘lél +is" (21)
to take advantage of analytic methods of evaluating the
derivatives, it will be necessary to take that route, but at this
stage of the development, we prefer the present procedure. Wwhere

It is also convenient to write the nuclear kinetic energy in a

symmetric form, namely Sh_ A _23N_6b”C)W 22)
= Aon Z | YiWo

0|SnC= iZé,* b Ay, ' —iS" (20)

g-nud = zérGlmém (13)
n Then the correction is given by
where T means the complex conjugate of the operator acts to

left and G = G At —1nA _1‘ At pn* n_i‘ NpNA
We partition the Hamiltonian operator into two parksy, %O' b Aoy~ BrOp ZZO' b S ZZS b0 (23)
the clamped nuclei Hamiltonian, and the rdst,’, which is n=0 n=0 n=0
just the difference between"™® + <™ and the BO result.
The operatoHy has geometry-dependent eigenvalWgsand This is the same form as eq 13, so it can be straightforwardly

eigenstate$nll evaluated given the functior®,-ob Aoy 10, etc.
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We now specialize to triatomics. Here we he@g alora,
02 = 3/8I’2, 03 = 3/8X 04 = Rx = JX Lx, 05 Ry Jy - Ly,
Os=R,=3,— [, andd; = 1, wherer; are distancess = cos
0, 6 is the angle between, andr,, and R, is an rotational
angular momentum operator of the nuclei about the nuclear
center of mass, in the frame of reference defined by the nuclei.
The geometry-dependent coefficie@g, are given below, and
they are obtained from the work of Sutcliffe and Tenny&bn.

The specific expression for the nuclear kinetic energy operators

is
W= gy 70+ 70+ 78 (24)
where
7*\/1% h l 8_ 4 l 8_ +
2 Uq Bl’l Uy 8r2
1 [(1 x2 T2l (25
1r #2" aX
oM} x  xd xd8 ¥ |
TV gl rgr,  rydrg rpar,  Corgor,
2 (1-3¢
L(l— XZ)a__,_gi_
rif, G ryr, ox
1-x) 9 (1-x) &
( ) ) o (26)
r, oryox r,  ory,ox

1 A oA A oA PN
TUR= S Mod = L) + My, = L)+ M3, - L)*+
M — L), — L) + (3, — L) — LI} +

hAl{1— 9 A oA
T[(mrlﬁ -2 2)(—(1 =X+ P _sz)l,z)] G, L)

Usly
(27)
7 — 128 9
VR ﬂlz'( rpory

1-a 9

12l —
X) ar,

ry

- -@1-

1
2 1-2¢
X )1/2 rlrz

2a—1

x X(1 —

o) 2 d

o @,- L) (28)

(1-

whereMgy, is given in egs 12 and 18 of ref 10. By the appropriate
choices of a few parameters relatindo the atomic positions,

it is possible to represent almost all coordinates used for
calculations on BLD. For orthogonal coordinates such as Jacobi
or Radau coordinates, ks = 0 so that7? and 7% do not
occur, while for bond-lengthbond-angle coordinates, all are
required. The volume element is;cr;, dx.

The parametea is defined in eq 12 of ref 10 and controls
the embedding of the body-fixedaxis. We will considea =
0 (align embedding), where the body-fixeehxis is alongr,
anda = 1/, (bisect embedding), where the body-fixeéhxis
bisects the angle betweean andT,. The choice of bisect
embedding provides good decoupling between vibration and
rotation, but align embedding results in simplier matrix elements
with fewer singularities. Equations 25, 26, 27, and 28 define
the functionsG; of eq 12.

The symmetric form is given by
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g{Vl)szg’(ar):l a?lJr(_) ;412 a?z
8X)(ﬂ #22)(1 xz)—] (29)

2
go_ M) x (Yo o LN o _
VU, r1r2+2(3r)xar2+28r Xar1
9\ X(1—x) 3 t1-x2 9  1/9\11—x 9
oE=x)o 1 o41 =+
x| ryr,  OX 28r r, ox 28x ry 8r1

t1—x 9
Z(Br) ry axJr (30)
u7-(\}F)2 = %[(jx - I:X)TMxx(jx

Q,-L)MQ,-0)+@Q,-)'MQ, - L)+

G- LM, —LZ)]+2(1 a Lz)x

: Ul 5

[(%)T(l B X2)1/2(jy _ |:y) + (jy — ﬁy)T(l - xz)llzg(] (31)

2(8X)T1 rlx2 a?z]

L)+ @, -L)'M,Q, L)+

ﬂlrl

and
1
9*2)—#1” [(ax) X1 -3, - L) +
A, - L)X - xz)l’za]
(1) Tl o

2u, [(ar) =0, Ly)+a@,-L)'=

(a—1)(a ) L5,-t)+@-1@,- Ly)Tl ]

(32)

The b values of eq 19 are as follows:
0 oa [ lol e 26 A Lo e 26 312
b = 2Gl|EH 8rl‘oﬂ+ zezEH 8r2‘0D+ ZGBH‘ ax‘OD“
2G,smIL,|00(33)
wherel

=1,2,3,and 5

b' = —2G,,m|L |00—2G, m|L,|00 (34)

- 52
0D+ 2G13H‘arlax 0
2

wherel = 4 and 6, and

} 8—22 0D+ 2(312H

or?

=G,

[

oo,

. L9 . 9 .
2(3153 L0 2617}‘871 ol i+ G,
2
- & D = M 8 - 3
ZGZ3E ‘ T 26,41 Lya—rz‘OD-F 2(327@‘872‘0@

2 D B 9
<lo| |- 2G4 Hw&‘oﬂvL
G, m|L20H G,m|L,L,|0H G,q¢m|L,L J0CH

GeelD| L2100~ 2G| L, |00+ Ggld| 2|00+ | 77 ™00
(35)

- .9 -
G, Ly&‘oﬂjt 2G,,

W
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In this notation, the BODC is jus’.l?. The excited states in egs
33 and 35 are oA’ symmetry, while those of eq 34 are Af
symmetry.

A subtlety of these equations is as follows. All quantities
occurring in them are either real or are pure imaginary. In our
codes, the factors afare not explicitly included. The compli-
cating factor is forGs, where thei is inAthe denominator, so
we store—Im[G;s)/i, while, e.g., form|L,|0C] thei is in the
numerator, and we stotm[m|£y|OE]1/i. In by, b, b}, andb}, the
factorsi/i = 1 occur, but inbf, some terms have in the
denominator and some havein the numerator, and it is
necessary to put in the extral factor for theGs terms. A
second complication occurs in eq 23. Sirfges pure imagi-
nary, and, e.g.b; is real, the correction muItipIying; oy is
purely imaginary, as i6ss. But Gzs containg in the denomina-
tor, while the correction containisin the numerator, so it is

necessary to subtract the correction. Another interesting feature

is that the matrix elements of the term involvidg(l = 7, m=
5) exactly cancel the term invoIvin@, (=5 m=7).

Schwenke

straightforward to extend the program to evaluate these matrix
elements correctly, as well as to compute the remaining
guantities.

Considern| ™P|0C] The one-electron part is just the matrix
element of the electron kinetic energy divided by the total
nuclear mass. The two-electron part is easily obtained by
modifying the MCSCF properties code to treat the velocity
operators in the same way it treats, when computing
m|L,L«|/OC] The one-electron velocity operator integrals are
already available in Molpro2000.1.

Next, consider the derivativa|0%/dy? 0] We will evaluate
this numerically using a modified version of the DDR code in
Molpro2000.1. In the DDR procedure, Molpro evaluates the
nonadiabatic coupling matrix elememid/dy|n'Cfor n = n' by
a finite difference. We only consider the central difference
formulas. Then the DDR procedure uses

0
fiFe

[ Tr(2, SIM + Tr(ya,S) + Tr(y SW'S) (39)

A valuable experimental parameter which giVGS a measure ywhere Tr means trac®) is the number of e|ectr0n$nrf is the

of rotational nonadiabaticity is the rotationgfactor. Experi-

transition density between stateandn’, Sis the overlap matrix

mentally, this is determined by the response of the molecule to jn the atomic orbital (ao) basi¥, is the molecular orbital (mo)

magnetic fields. A useful compilation of rotatiorgfactors is
given in the paper of Flygare and Bens8riThe rotationalg
factors are defined &%

elec

Yo = Yo T Yo (36)
with
Mp 2 2
G =2 4B+ C)) (37)
aa )
2M, _ |O|C,Ind?
G = (38)

melota v BEp— E,

where M,, is the proton massine the electron massl,, a
component of the moment of inertia tensgrthe nuclear charge
of atomj, andB; and C; are the noree Cartesian coordinates
for atom j. The nuclear contribution to the factor is

eigenvector, and the superscript denotes numerical differentiation
with respect toy. Specifically

Vo = [Van (VY + A) = yoa(yy — A)J(2A) - (40)
whereynn(y,y + A) is the transition density computed using
the mo eigenvectors frory, bra () configuration interaction

(CI) coefficients fromy, and ket () CI coefficients fromy +
A

=[Sy +A) — Syy—A)(24)

whereS(y,y+A) is the overlap matrix with bra ao basis functions
aty and ket basis functions gt+ A, and

(41)

V= [V(y+4) — V(y—A))/(24) (42)
whereV(y) are the mo eigenvectors atThus, one carries out
calculations at three geometries to get the orbitals and ClI
coefficients and then uses existing code to com3yg/+A)

straightforwardly computed, and the electronic contribution @ndynri(y,y£A). From this, the DDR code generates the full

involves some of the same quantities that are required for the derivative. In actuality, MOLPROZ2000.1 follows a slightly
nonadiabatic correction. different procedure. First, when using the central difference

formula, it also requires the overlap, etc., with the reference

I1l. Electronic Matrix Elements

We will evaluate the required electronic matrix elements using
a modified version of Molpro2000.%.We have carried out the

modifications in two stages. In the first stage, we evaluate the

BODC using the MCSCF code and DDR procedure in Molpro.

In the second stage, we included a single-excitation Cl code to

geometry, but these terms all cancel out. Second, subroutine
OVLADR incorrectly assumes th& and SWV'S are skew
symmetric, and so it attempts to reduce the error in the
calculation by zeroing the diagonals and averaging over the
absolute values of the off diagonals. This error is small for
multiconfiguration wave functions since the ClI contribution (the

first term in eq 39) dominates, but for SCF wave functions,

evaluate the nonadiabatic corrections using a SCF descrlptlon,[hiS error is catastrophic.

of the ground state.

In general, it is necessary to evaluate the first-order matrix
elementsii|L4|00and [m]3/dy|00and the second-order matrix
elementsn|L,L4|00) ()L, 9/dy|0C) [h|§2/dy?|0C) [h|32/(dydz)|OL)
and[n| ™P|0C] wherey andz are some vibrational coordinate.
The first-order matrix elements have only one-electron contribu-

tions, while the second-order matrix elements have both one-

and two-electron contributions. As distributed, Molpro2000.1
evaluates|L,|0O0) M|LyLg|OL] and the one electron part of
[m| & ™P|OLI It claims to also evaluatan|a/ay|O0] but the finite

To compute the second derivative we need, we carried out

three modifications. First, we forced the Cl code to save the
transition density computed when= n'. Second, we computed
the one electron contribution to the derivative via

3

2Tr(%.S) + 2Tr(Y,SVV'S) + 2Tr(y,,SVV'S) (43)

ou = Tr(y$9IM + Tr(y,o") + Tr(y,,SVV'S +

difference procedure does not do that correctly. It is fairly where
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Y= VoY HA) + voVy—A) = 27,y WIA® (44)

etc. Finally, we computed the two-electron contribution
I
oy’

n0(2)

whered; .’ is the two-particle density in the mo basis, which
is computed by the MCSCF code, but not saved, and

0= 3 3o

ij,Im
2e ] im

Mﬁ MY (45)

M = V'SV + VsV (46)

We modified the MCSCF code to pass the two-particle density
matrix to the DDR code. It should be noted that the MCSCF

code computes the two-particle density matrix in the mo basis
of the last iteration. Thus, it is necessary to call the MCSCF

code twice if one uses different orbitals for subsequent steps,
e.g., natural orbitals.

To compute the mixed second derivgti&"éayaz, we make
four calculations atyt+A,z+A), (y—A,z+A), (y+A,z—A), and
(y—A,z—A). Then we can use the formula
PR

= yz

‘ayaz 0 5 Tr(y’s/M + Tr(y oS +

Tr(y,oSVV'S + Tr(y%,S) + Tr(*,SW'S) +
Tr(yoSVV'S + Tr(y%S) + Tr(yZ,SW'S) +
Tr(y,oSVV'S) (47)

and
82
ayoz

n0(2)
ij,Im

(48)

b

MY My,

o -330

with

716 = [7ooyHAZHA) = yoo(y+A,Z-A) — )
YeoY—AZFA)F v o(y—A,z=A)(AAA) (49)

Vio = 7o HAZHA) = yooly—AzZHA) +
VooY+A,Z—A) — yo(y—A,z—A)J/(4A) (50)

Vio = [Vno(y+AZ+HA) — Vn0~(y+A:Z_A) + i i
7noY—AZTA) = vo(y—A,z=A))/(4A) (51)

etc.
To evaluate the mixed angular momentum derivative operator,
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L,=V'LV (54)
Thus, we can evaluate the BODC for any wave function that
we can get out of the MC-SCF code. In practice, since all the
finite difference formulas have errors proportional to even
powers of the stepsize, we carry out calculations at two stepsizes
and use Richardson extrapolatidio improve the results.

We initially tried using this same procedure to compute the
nonadiabatic correction functions but ran into problems. Specif-
ically, as formulated, we need a sum over excited states, and
doing a state averaged MCSCF for each level becomes very
expensive and is hard to ensure a good description of the ground
state in the presence of the excited states. There also is the issue
of how many states are required for convergence, and curve
crossing as a function of geometry. Thus we think that a reliable
procedure will (i) optimize the ground state without reference
to excited states and (ii) include all excited states. The simplest
example of this is to use a SCF description of the ground state
and a single-excitation Cl description of the excited states. We
have written a program to evaluate all the required matrix
elements for a single-excitation Cl from a closed shell SCF wave
function using the formulas given in ref 18.

In our calculations on k2 we found that it was important
to include diffuse basis functions when computing the excited
states; thus, we use the augmented basis functions of Duning
and co-workerd® Also note that the excited states are not given
accurately by these basis sets since they are optimized for the
ground state, but the ground-state wave function response seems
to be computed accurately since all matrix elements involve
the ground state.

IV. Results

We take the atomic mass of H to be 1.007 825032 1 u and
the atomic mass of O to be 15.994 914 622 1 u, and we convert
the atomic mass to atomic units using the relation ==
5.485 799 11x 10~ u. We then subtracted off & to get the
nuclear mass. The conversion factor from atomic units tolcm
units was computed from the speed of light, 299 792 458 M/s
Planck’s constant, 6.626 068 %10-34J s and the factor &y,
= 4.359 743 81x 10718 J, all which were obtained from the
NIST web page http://physics.nist.gov.

A. H2. We take the accurate?potential and BODC from
Table 2 of Schwartz and LeRdy.This potential includes
relativistic and radiative corrections.

We carried out calculations of the nonadiabatic correction
for H, for 31 bond lengths, covering 040 A. At small bond
lengths, the spacing was 0.1 A. These calculations used the aug-
cc-pVTZ basis set and gave the SCF BODC as well as the
nonadiabatic corrections.

we can use essentially the same procedures, except now we need The SCF PES was used to compute the derivatives in eq 22.

matrix elements such ds,(y,y+A). It is easy to modify the
code that evaluates the overlap matBfy,y+A) to return
Lo(y,y+A) instead. Then it is straightforward to compute

b

A

L

0] = Tr(lobe) + Tr(uld) + Ty V'S
e
(52)

‘
9y
and

n0(2)

B ﬁ%‘o@ez Z%é- ML (53)

ij,Im alm

where

We also calculated the BODC using CASSCF wave functions
at these same geometries. These calculations used the cc-pVTZ
basis set. Several different active spaces were used, and these
involved different number of 4 By, By, and By, orbitals. The
orbitals in the active space were chosen by looking at the
occupation numbers of the natural orbitals from a larger
calculation at the equilibrium geometry. In our vibrational
calculations, we interpolated the corrections using the nine-point
Lagrangian interpolation of the correction tinfes We solved
for the vibrational energy levels using a finite basis expansion
of the type described in the appendix of ref 19.

In Table 1, we give the adiabatic corrections to the bound
vibrational levels for nonrotating +tomputed using the BODC
from different sources. We compare the accurate results with
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TABLE 1: Adiabatic Corrections to the Vibrational Energy TABLE 2: Nonadiabatic Corrections to the Vibrational
Levels of H, (in cm™1) Energy Levels of K (in cm™1)
CASSCF v nonad ratio® erre scaled e
v accurate SCF 1,06, 2,002 2,11,F 0 —0.44 0.883 0.06 —0.003
0 0.00 0.00 0.00 0.00 0.00 ! 118 0.885 0.15 0.013
2 —1.84 0.880 0.25 —0.007
1 —1.41 —2.03 —1.09 —-1.24 —1.39
3 —2.41 0.872 0.35 0.015
2 —2.57 —3.94 —1.93 —2.22 —2.52
4 —2.90 0.863 0.46 0.055
3 —3.48 —5.75 —2.51 —2.94 —3.38
5 —-3.31 0.852 0.58 0.112
4 —4.12 —7.46 —2.83 —-3.39 —3.96
6 —3.64 0.839 0.70 0.186
5 —4.49 —-9.11 —2.90 —3.56 —4.27
7 —3.87 0.825 0.82 0.278
6 —4.58 —10.69 —2.70 —3.47 —4.29
8 —4.00 0.810 0.94 0.380
7 —4.38 —12.22 —2.24 —-3.10 —4.03
9 —4.02 0.794 1.04 0.478
8 —3.88 —-13.71 —1.55 —2.46 —3.49
10 —3.90 0.781 1.09 0.545
9 —3.10 —15.18 —0.63 —1.59 —2.70
11 —3.61 0.789 0.97 0.461
10 —2.04 —16.62 0.49 —0.49 —1.69
12 —-3.11 0.765 0.95 0.518
11 —0.76 —18.05 1.77 0.78 —0.50
13 —2.34 0.802 0.57 0.248
12 0.70 —19.42 3.20 2.20 0.82 14 118 0.820 0.26 0.093
13 2.34 —20.57 4.77 3.74 2.25 ’ ' : '
14 4.21 —20.65 6.55 5.46 3.83 a Ab initio prediction from the present work Ratio between column

2 and accurate results¢ Difference between column 2 and accurate
results.d Difference between column 2 scaled by 1.14 and accurate

results.
those obtained using the BODC computed using the aug-cc-

PVTZ basis set at the SCF level and the BODC computed using TABLE 3: Components of BODC for H2O at the
the cc-pVTZ basis set using CASSCF wave functions with Vibrationally Averaged Geometry

aNumber of A, Bs,, Bz, and By orbitals in the active space.

different active spaces. Since the SCF wave function does not CASSCP scp
_dissoqiate properly gnd the zero of energy for the cglcula}tions [0 7™00 464.6558 cmt 463.3701 crmt
including the BODC is most naturally taken to be at dissociated  =,,G,,00]|(,L 400 57.8320 it 55.7876 cm-1
atoms, for the purpose of this comparison, we have arbitrarily  [0]0%0600 —0.55769 —0.53541
set the zero energy so that the adiabatic correction for the ground G33E20)|32/23X2\OD 20.5443 cm* 19.7233 cm*
vibrational level is zero. The SCF BODC significantly over- EGM%%Q/Z')?E' oo e YIS
. . . . 11! 1 . .

estimates the accurate adiabatic correction. For the fundamental, -, 602.1752 crmt 5940261 cm’

it gives a correction about 50% too large, and furthermore, it _ . _ _
clearly breaks down very badly as the amount of vibrational ~ *Using the cc-pVTZ basig Using the aug-cc-pVTZ basis.
ax%tat;oz |tri10:leas?s. Irl1mf:ontrast, I':?eti\r/elsults :;on: thigASSVSFthan 11 000 cm! higher than the minimum. For the +o
wave functions are always quailtatively COITect, and as We 4, oo calculations, we interpolated the correction functions
increase the size of the active space, the results become closels e .

) - y fitting them using
to the accurate results. The largest calculation agrees quite well

with the accurate results all the way up to dissociation. This i =iy ok

clearly shows that the reason for the poor performance of the “ZC‘Jk(rl Dz ==X (55)
SCF method is its lack of electron correlation. The relative errors

from the CASSCF calculations are more constant than the with i, j < 8,k < 8 — i — j, andf andx parameters being near
relative errors from the SCF calculations, so scaling can improve in value to the equilibrium values. Some correction functions
the results. are symmetric with respect to interchangingandr,, while

We now consider the prediction of nonadiabatic effects. The some are antisymmetric, and when we use Jacobi coordinates
rotational g factor of H, as determined from experiment is  or align embedding, some are asymmetric. In the former cases,
0.882 9112 and atR,, we compute 0.9105 using the aug-cc we augment the data faR; > R, with data forR; < R,
pVTZ basis using single-excitation CI. This means that we constructed from the appropriate symmetry relations. In the later
recover about 77% aft’, which is the rotational nonadiabatic ~ case, we carried out calculations ff < Ry. The coefficients
effect (see eq 36). In Table 2, we give the nonadiabatic Cj were determined by least-squares fitting, and the points were
corrections to the bound vibrational levels for nonrotating H equally weighted. It should be noted that the expansion we use
computed using the aug-cc-pVTZ basis using single-excitation will not extrapolate properly. This is not a problem for the
Cl. We use the accurate BODC in these calculations. We find present results, for we evaluate the matrix elements of the
that we obtain from 79% to 89% of the accurate result. Notice corrections using the basis optimized for the BO approximation,
that in contrast to the BODC computed at the SCF level, the so our functions do not sample regions where the expansions
nonadiabatic correction behaves reasonably well all the way upbreak down.
to dissociation. If we scale the corrections by the factor 1.14,  For this work, we take the BO PES to be the one denoted
the errors in the transition frequencies for the low-lying levels V52 4 Aveore from ref 19. This is the most accurate purely ab
are only a few times 0.01 cri. This is a very encouraging initio PES available. We ignore relativistic effects. We use the
result. aug-cc-pVTZ basis set to compute the nonadiabatic correction

B. H,O. We carried out calculations of the nonadiabatic functions and the SCF BODC. The oxygyn 1s-like orbital was
corrections at a set of geometries generated as follows. Wealways doubly occupied in the single-excitation Cl calculations.
generated a grid wit® running from 70 to 150 in steps of We have also computed the BODC at the CASSCF level. Here
10° and withR; andR; running from 0.825 to 1.225 A in steps  we use the cc-pVTZ basis set, and the active space consists of
of 0.05 A, whereR are the two OH bond lengths af@lis the eight electrons in Baand 24 orbitals. This is the same active
HOH angle. We then retained only those points satisfyRag space used to compul®Z. In Table 3, we give the various
> Ry, and the energy computed frox$™P from ref 19 is less guantities that go into the BODC computed at the vibrationally
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TABLE 4: Unique Nonadiabatic Correction Functions for but since it is negligible in practice, we will assume our codes

H,0 at the Vibrationally Averaged Geometry for Radau are working properly. The difference fdr= 10 between align
Coordinates, Bisect Embedding (in atomic units) and bisect embedding is essentially zero.

—0/8r171.0275213« 1077 3/ars The rotationaly factors that we compute at the vibrationally
9/0r2'3.8808313x 10°° 3/[3(1 averaged geometry are 0.721, 0.683, and 0.658, which can be
o 3912'6324533( 10: lor compared to the experimental vallesf 0.718, 0.657, and
78486 1.4062589< 107 9/30 0.645. The agreement is very satisfactory, with our calculations
—J9.8205515¢ 10°%J; recovering from 91% to 99% of the electronic contribution. The

—J,6.0550853x 10" /dr, component with the smallest experimental uncertainty is the
—J,7.3757478x 10°%, y-component, and if we scale our results by 1.10, we match
—J11.7082113« 108, this value. We will assume that this same scaling is required
3.1006092x 1078 d/dry for all the nonadiabatic correction functions.

—8.0263252x 1071°9/00

> 0553018 10-7 In the final columns of Table 5, we give the nonadiabatic

corrections we compute for the low-lying vibrational levels of
2 For these coordinates, the reduced mass equals the proton massH,0. We give three sets of results. In the first column, we give

averaged geomey g = 0974 A andey = 1082, This (1 ECULE el obaned using e exparion of o055 I
was determined from the°Z + AVeore PES. The dominant term '

in the BODC is the mass polarization term. In Table 4, we give use the resulf[s ok T"?‘b'e 6. In.the final column, we neglect the
the nonadiabatic correction for Radau coordinates computed 4tCT0SS derivatives. First, consider the accurate results. We see

the vibrationally averaged geometry. In all calculations, the gh?f;g::??gii;g.;heoaiﬁgsgc ;ﬁgectigé’h.tse (t)re:r(tignazre ¥ehrg
derivatives in eq 22 were computed from the SCF PES. In Table nlonad'abat'c corr;c?onv's smallsfor thjbend'ln go \t/artonesS. hile
1S we give our calculated values of the CASSCF BODC, and ! : lont Ing ov » W

in Table 2S, we give a fit to the CASSCF BODC in terms of the adiabatic correction is large and negative. In contrast, the
Ry Ry andé nonadiabatic correction is much larger for stretching overtones,

In Table 5, we give results from various BODC. Oufr-o and the adiabatic correction is smaller and positive. In fact, the

vibrational calculations are well converged and use the algorithm sum of the nonadiabatic correction and the adiabatic correction

of ref 19; for simplicity, the hyperspherical transformation is is quite small for_ the stretchmg_ overtones. N_ext, consider the
not performed. We label the vibrational levels by local mode effects of assuming the no_nad|abat|q corrections are constant.
guantum numbers. We see good agreement between the resultghe agreement with low-lying levels IS very good but det‘?“o‘
we obtain using the BODC reported by Tennyson and co- rates somewhat as the amount of excitation increases. Finally,
workerd and our SCF BODC. When we go to the CASSCF consider the !ast column. These results are nearly in as good
BODC, we see good agreement with the SCF results for low- agreement with the_ accurate results as 'ghe previous column.
lying bending overtones but sizable disagreement for stretchingT.hus’ itis easy to mclud_e these_ eff_ects in existing codes by
overtones. At first sight, this seems unreasonable, but compari-s'mpIy scaling the terms in the kinetic energy operator.
son with Table 1 shows that the shift between SCF and CASSCFE  In Table 6, we give the adiabatic and nonadiabatic corrections
Thus, it appears that the SCF BODC provides a good description|eV9|- The adigbatic correction functjon is from the CA_SSCE
of the bending motion for low-lying levels but does a very poor calculation using the cc-pVTZ basis, and the nonadiabatic
job on stretching levels. Further convergence tests are requiredcorrections are from the Cl singles calculation using the aug-
to ascertain the accuracy of the present CASSCF BODC CC'pVTZ baS|S, Scaled by 110 The ad|abat|c and nonad|abat|c
We now turn to nonadiabatic corrections. A big issue fe®H corrections to the rotational levels are about the same size on
iS Verifying that we are doing the Calculations proper'y_ To aVera.ge, but the adlabatIC COI’I'eCtIOI’I |S bOth pOSItlve and
ensure this, we have carried out calculations using severalnegative, while the nonadiabatic correction is always negative.
different kinetic energy operators. We performed separate It thus seems important to include these effects if high (
electronic structure calculations and fits for each choice. We cm~1) accuracy is required. How do we then rationalize the
used the H+ OH Jacobi coordinates with align embedding, results of our previous work® where we obtained about 0.05
Radau coordinates with both align and bisect embedding, andcm™* accuracy without including nonadiabatic effects? There
bond-length-bond-angle coordinates with bisect embedding. We are several possibilities for this. One is that there is not sufficient
carried out calculations for total angular momenta 0 and 10. If experimental data so that the fitted PES can behave nonphysi-
all things are done properly, all choices of coordinates should cally to make up for the deficiency. This would greatly reduce
give the same results within the accuracy of second-order the predictive power of the PES. Another possibility is as
perturbation theory. After each programming error and proce- follows. If we neglect the cross terms between vibrational
dural deficiency was corrected and the level of agreement coordinates, and assume that the corrections are constant, as
improved, it was tempting to consider the program correct. we tried above, we can remove the nonadiabatic part from the
However we continued exploring, and the final result was very vibrational kinetic energy using coordinate scaling and wave
small differences. The calculations with Jacobi and Radau function transformation. This would mean, however, that the
coordinates gave the same results to within their convergencePES would have very complex isotope dependence, and
errors. The differences between the calculations using bond-furthermore, the rotational part of the kinetic energy would be
length—bond-angle coordinates and Radau coordinates weremodified. Thus, it should be possible to obtain good results for
small but not zero. Our final calculations showed apparently a single isotope considering purely vibrational levels and, if one
random differences of a few 0.0001 chfor stretching levels, is lucky, reasonable results for rotational levels. In contrast, by
which is very satisfactory. For bending levels, the differences explicitly including nonadiabatic effects, we expect to be able
ranged from 0.001 to 0.005 crhand were more systematic. to treat all isotopomers on an equal footing and obtain accurate
We have not been able to identify the source of this difference, predictions for unobserved vibrational and rotational levels.
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TABLE 5: Corrections to the Vibrational Energy Levels of H,0 (in cm~1)

adiabatic correction nonadiabatic correction
Vb Vs BO ZPSP SCF CASSCF accurate cofist diag const
0 (0,01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0,01+ 1597.60 —-0.50 —-0.50 —0.46 -0.07 -0.07 -0.07
2 (0,01 3157.14 —0.99 —1.00 —-0.94 —-0.15 -0.14 -0.14
0 (1,0 3661.00 —-0.06 —-0.05 0.39 -0.70 —0.69 -0.72
0 (1,0 3758.63 0.12 0.13 0.62 —-0.79 —-0.77 -0.74
3 0,01+ 4674.88 —-1.49 —-1.52 —1.46 -0.23 —-0.20 -0.20
1 (1,0 5241.83 —0.51 —0.49 —0.01 —0.76 —0.75 -0.78
1 (1,0 5336.74 -0.33 -0.31 0.24 -0.87 —-0.84 -0.81
4 (0,01+ 6144.64 —2.02 —2.08 —2.03 —0.30 —-0.27 —0.26
2 (1,0 6784.57 —0.94 —-0.94 —0.42 —-0.84 —-0.82 -0.85
2 (1,0 6879.72 -0.74 -0.74 -0.16 —-0.94 —0.90 -0.87
0 2,0+ 7208.80 —0.08 —0.05 0.96 -1.37 —-1.35 -1.39
0 (2,0 7256.00 0.06 0.09 1.19 —-1.43 —1.40 —1.40
0 1,14+ 7450.86 0.18 0.21 1.22 —-1.57 —-1.51 —1.46
5 (0,01 7555.62 —2.65 —2.74 —2.71 —0.37 —0.32 —0.32
3 (1,01 8286.03 —1.38 —1.40 -0.87 —-0.91 —0.89 —-0.91
3 (1,0~ 8384.72 —1.15 —1.17 —0.58 —1.02 —0.97 —0.94
1 (2,0 8771.71 —0.47 —0.44 0.66 —1.43 —1.40 —1.44
1 (2,0 8816.00 -0.33 -0.29 0.88 —-1.50 —1.45 —1.45
6 (0,0 8886.34 —-3.51 —3.61 —3.63 —0.41 —0.36 —0.36
1 2,1+ 9008.72 —0.20 —-0.17 0.90 —1.65 —1.56 —1.52
4 (1,0 9738.82 —1.90 —1.96 —1.43 —0.97 —0.94 —-0.97
4 (1,0 9846.98 —-1.58 —-1.63 -1.05 —-1.09 —-1.03 —1.00
7 (0,01 10105.50 —4.51 —4.62 —4.68 —0.46 —0.39 —0.38

aUsing the BODC of ref 7° Using CASSCF BODC and nonadiabatic correction functions multiplied by £ A8suming correction functions
are constant, with the values taken from Table 4 multiplied by 2 2suming correction functions are constant, with the values taken from Table
4 multiplied by 1.10, except the cross derivatives are neglected.

TABLE 6: Corrections to the Rotational Energy Levels of incorporated into existing codes. This makes the ab initio
Ground Vibrational Level of H ;0 for J = 10 (in cm™) calculation of the nonadiabatic effects very inexpensive to

Ka Ke BO BODC nonad implement in practice.

0 10 1114.95 —0.08 —0.21 . . . ..

1 10 1114.97 ~0.08 —0.21 Supporting Information Available: A table giving the

2 8 1438.58 —0.15 —0.25 CASSCF BODC correction function for4@ and a table giving

3 8 1446.67 -0.11 —0.25 the fit to the CASSCF BODC correction function fog®l. This

4 6 1617.18 —0.20 —0.27 material is available free of charge via the Internet at http:/

5 6 1719.18 —0.02 —0.29 ubs.acs.or

6 4 1875.80 0.09 -0.32 pubs.acs.org.

7 4 2054.53 0.22 —-0.34
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