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It is customary when computing ro-vibrational transitions in molecules to invoke the Born-Oppenheimer
separation between nuclear and electronic motion. However, it is known from accurate calculations on H2

+

and H2 that the first-order (diagonal adiabatic) and second-order (nonadiabatic) corrections are not negligible
and are both important. In the present work, we have made an ab initio implementation of the Bunker and
Moss formalism for the nonadiabatic correction and applied it to H2 and H2O. From comparison to accurate
calculations for H2, we find that we can obtain good results for the nonadiabatic correction using CI singles
to treat the electronically excited states if we scale the results, but we must go beyond the SCF approximation
to obtain an accurate diagonal adiabatic correction. For H2O, we find that the first-order correction is more
important than the second-order correction for bending energy levels, but the second-order correction is more
important than the first-order correction for stretching energy levels. The correction to rotational levels is
also significant. Thus, first- and second-order corrections are vital for accurate ab initio predictions of transition
frequencies.

I. Introduction

When we solve the nonrelativistic Schro¨dinger equation for
the bound states of a molecule, the first stage in the calculation
is to fix the nuclear positions, removing all terms in the
Hamiltonian which involve the nuclear masses, and then to solve
for the electronic energy. This level of approximation is called
the clamped nuclei approximation. We then allow the nuclei to
move, subject to the forces which are a result of the electronic
energy determined from the clamped nuclei approximation. This
is the customary Born-Oppenheimer (BO) approximation. At
the next level of refinement, we retain the electronic wave
functions from the clamped nuclei approximation, but we use
as the electronic energy the expectation value of the full
Hamiltonian. This level of approximation is called the adiabatic
approximation, and the difference between the two electronic
energies is the Born-Oppenheimer diagonal correction (BODC).
This is the first-order correction to the Born-Oppenheimer
potential energy surface (PES) and results only in a mass-
dependent change to the PES. The ultimate level of refinement
is to couple the electron and nuclear motion. In principle, this
will give the exact result, and the difference between the results
obtained at this level and the adiabatic approximation is the
nonadiabatic correction.

The BODC is fairly easy to implement, for it just results in
a change to the PES. Formally, the nonadiabatic correction is
much more difficult to compute, for explicit coupling to myriad
of electronic states is involved, and the PES loses its signifi-
cance. A significant advance was the derivation of an effective
Hamiltonian for the nonadiabatic correction by Bunker and
Moss.1 In that work, they gave the procedure for deriving a
correction to the Born-Oppenheimer, single-PES Hamiltonian
that includes the nonadiabatic correction, accurate to second
order in perturbation theory. This makes the calculation of the
nonadiabatic correction essentially the same as the BO ap-

proximation once the correction functions are known. This is
much more practical than nonperturbative methods.2 Although
they did not do so, their expression for the correction involves
quantities that can be explicitly calculated from properties of
excited electronic state wave functions. We have recently carried
out the first ab initio utilization of the Bunker and Moss
formalism and showed that very accurate results could be
obtained for H2

+ and HD+.3 In the present work, we extend
our ab initio calculations to multielectron systems: H2 and H2O.
We will use H2 to test our procedures for a multielectron system,
since accurate results exist for H2,4 and then use H2O to make
the first ever prediction of the nonadiabatic correction for a
system containing more than two electrons.

The BODC for H2O has been computed by several workers.5-7

All these calculations were at the SCF level. Bardo and
Wolfsberg5 used normal coordinates and the Eckart conditions
to separate out rotational and center-of-mass motion, and this
resulted in very complex expressions for the BODC. Handy and
co-workers6 used a much simplier expression for the BODC
that they proposed which does not involve internal coordinates
or the separation of the center-of-mass motion. Subsequent work
by Kutzelnigg8 has put the Handy formula on much firmer
grounds. Wolfsberg and Handy only considered the BODC in
the vicinity of the minimum, while Tennyson and co-workers7

used the Handy formula to produce a BODC surface.
In the course of this work, we will compute the BODC surface

at several different levels of electronic structure theory. We have
used both the Handy formula and the formula we have derived
in the present work, and we obtain identical results. We also
compare our SCF BODC to that computed by Tennyson and
co-workers and find very similar results. However, we find that
it is necessary to go beyond the SCF approximation to achieve
accurate results for the BODC.

In the present work, we have implemented the simplest
possible representation of the electronically excited states,
namely, single-excitation CI. We find that although this level† Part of the special issue “Aron Kuppermann Festschrift”.
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of calculation does not give results of quantitative accuracy, a
simple scaling greatly improves the reliability of the results.
This makes this a very cost-effective calculation.

II. Derivation

Bunker and Moss have given a derivation for diatomics1 and
for H2O as well.9 However, since we explicitly evaluate the
correction functions, it is valuable to treat some of the steps in
the derivation differently. Hence, we will give our derivation
for polyatomics. Another difference with most previous workers
is that we solve the electronic structure problem for the excited
states separately for each isotopomer. This may not be the most
efficient procedure but seems to be the most natural. For
diatomics, see our work on H2+.3

We now explicitly give the kinetic energy operator. We
assume that there areN nuclei andM electrons. In terms of
space-fixed Cartesian coordinates, the kinetic energy operator
is given by

The nuclear kinetic energy operator is

wheremi is the mass of the nucleii, andXi, etc., are the Cartesian
coordinates. The electron kinetic energy operator is

We reiterate that at this point, the Cartesian coordinates of the
nuclei and electrons are in the space-fixed frame of reference.

Now we assume that we form new vectors describing the
nuclear positions, with the only restriction being that theNth
vector gives the center of mass of the nuclei, and that the center
of mass is decoupled from the remaining nuclear vectors. We
then assume that some sort of vibration-rotational analysis is
carried out on the firstN - 1 vectors, so that the nuclear kinetic
energy operator takes the form

whereG̃lm is a geometry-dependent coefficient,Ôl is an operator
for vibration if l ) 1 to 3N - 6, for rotation if l ) 3N - 5 to
3N - 3, and for unity ifl ) 3N - 2. For a specific example of
this, see the text after eq 23. The ro-vibrational wave function
is expanded in terms of basis functions such asfνMR(x,xb)
× DMRM′R

(R) (RLB,âLB,γLB), where x is a collection of all the
vibrational coordinates exceptxb, xb is the bending vibrational
coordinate used to define the nuclear body fixed axes, andRLB,
âLB, andγLB are the Euler angles determined from the nuclear
body fixed frame of reference. The indexMR on f specifies the
behavior near linear geometries(fνMR ∝ xb

MR/2), andν specifies
the remaining quantum numbers. The final quantity, for the
nuclear center of mass, is given by

Here M nuc is the total nuclear mass, andXncm, etc., are the
Cartesian coordinates of the nuclear center of mass.

We next form a set of relative electronic coordinates. We
take theM + 1 vectors consisting of the electronic positions
and the nuclear center-of-mass position and formM vectors
describing the electron positions relative to the nuclear center
of mass and one vector describing the position of the center of
mass of the nuclei and electrons. Under this transformation, we
have

where u e ncm is the same asu e, except the origin of the
electronic coordinates is the center of mass of the nucleisthese
coordinates will be calledXj

e ncm, etc.sand

is the mass polarization term, andu cm is the kinetic energy
operator for the total center of mass. At this point, the electron
Cartesians have their origin at the nuclear center of mass but
are oriented with respect to the space-fixed frame of reference.

We now transform the electron Cartesians to the nuclear body
fixed frame of reference. This potentially only effectsu e ncm

and u mp. Since these operators are expressed in terms of
Cartesians, the transformed operators will have the same form,
except the Cartesians are now referenced with respect to the
nuclear body fixed frame of reference. The electronic wave
function is expanded in terms of the basis functions
ΣMLψnLML(Xe ncm)DMLM′L

(L) (RLB,âLB,γLB), where the valuesXe ncm

are the collective electronic coordinates.
Finally, we transform the electron-nuclear wave function to

the total angular momentum representation. This is done because
the ro-vib-electronic wave function is expanded in terms of
basis functions containing the productDMRM′R

(R) DMLM′L
(L) . If we

make the substitution

and then transform to a simple product basis in the usual way,11

we obtain a new basis function

The Hamiltonian matrix will be diagonal inJ and MJ. In
practical calculations, one deals with electronic functions which
are not eigenfunctions ofL andML, which means that thefν K-ML

must be made independent ofML. In the present work, we do
this by using a basis function having the indexK. This
substitution is only questionable near linear geometries where
the index controls the limiting behavior and is appropriate for
the lowest electronic state havingML ) 0. In general, the lowest
electronic state at linear geometries will depend onx, so the
situation becomes complicated. We will assume that the fine
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details at linear geometries are not important. Since these basis
functions no longer are labeled byR, we need to use the relation

in eq 4 to evaluate matrix elements. Finally, we parity adapt
the basis functions in the usual way.11

In summary, the exact nonrelativistic kinetic energy operator
now takes the form

where

with RR being replaced byJR - LR in Ôl, wherel ) 3N - 5
to 3N - 3.

The total center of mass is decoupled from all other degrees
of freedom and is henceforth dropped.

It should be noted that when carrying out the electronic
structure calculations for particular relative positions of the
nuclei, the nuclear centers are not to be placed arbitrarily, but
rather, the center of mass of the nuclei is at the origin, and the
orientation is given by the definition of the nuclear body fixed
frame of reference. This means that new calculations are
required if one considers different isotopes of any nuclei. The
total energy is not affected by shifting and rotating the nuclear
positions, but most of the matrix elements of the operators
required for the nonadiabatic correction are affected by these
changes. This should be contrasted with the Handy method for
computing the BODC.6 There one takes derivatives with respect
to a given nuclear position, with the positions of the other nuclei
being fixed. Thus, the derivatives are independent of mass. There
are two reasons favoring the present method. The first is that
all calculations for triatomics can be carried out usingCs

symmetry while the Handy method requires no symmetry for
some of the derivatives. The second is the formation of the
nonadiabatic correction. In contrast to the BODC, which is
independent of coordinate system, the nonadiabatic correction
functions are manifestly different for different coordinate
systems. Thus, the generalization of the Handy method to
evaluate the nonadiabatic corrections will involve using deriva-
tives with respect to Cartesian coordinates to generate the
various matrix elements which we determine directly below.
This has the advantage that the Cartesian derivatives are
independent of the masses, but there will be intermediate
expressions that are more complicated. Note that if one is going
to take advantage of analytic methods of evaluating the
derivatives, it will be necessary to take that route, but at this
stage of the development, we prefer the present procedure.

It is also convenient to write the nuclear kinetic energy in a
symmetric form, namely

where † means the complex conjugate of the operator acts to
left andGlm ) Gml.

We partition the Hamiltonian operator into two parts,H0,
the clamped nuclei Hamiltonian, and the rest,H ′, which is
just the difference between TnucJ + u mp and the BO result.
The operatorH0 has geometry-dependent eigenvaluesWn and
eigenstates|n〉.

The result of the derivation of the nonadiabatic correction
given by Bunker and Moss1 is that, to the second order, the
Hamiltonian operator should be modified by adding the cor-
rection

where

with H ′0 ) H ′ and ∆0n ) W0 - Wn. The symbols 0 andn
denote electronic states, with being 0 the ground electronic state,
and 〈|〉 denotes integration over electronic coordinates. In
principle, the sum over excited statesn will include all bound
electronic excited states as well as all continuum electronic
states. In practice, however, we solve the electronic structure
problem using a finite basis, so all excited states are descrete
and one can explicitly carry out the sum. In principle, one needs
much larger basis expansions to describe excited states than
just the ground state; however, since all matrix elements involve
the projection of the excited states on an operator acting on the
ground state, as we will see below, it is sufficient to be able to
accurately describe the ground state and its response to the
operators.

It is straightforward to show that we can write

and

with bl
n given below. We then find that

where

Then the correction is given by

This is the same form as eq 13, so it can be straightforwardly
evaluated given the functionsΣn*0bl

n ∆0n
-1bm

n , etc.
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-1Ôl + iS n (21)

S n ) ∆0n
-2 ∑

l)1

3N-6

bl
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We now specialize to triatomics. Here we haveÔ1 ) ∂/∂r1,
Ô2 ) ∂/∂r2, Ô3 ) ∂/∂x, Ô4 ) R̂x ) Ĵx - L̂x, Ô5 ) R̂y ) Ĵy - L̂y,
Ô6 ) R̂z ) Ĵz - L̂z, andÔ7 ) 1, whereri are distances,x ) cos
θ, θ is the angle betweenr1 and r2, and R̂R is an rotational
angular momentum operator of the nuclei about the nuclear
center of mass, in the frame of reference defined by the nuclei.
The geometry-dependent coefficientsG̃lm are given below, and
they are obtained from the work of Sutcliffe and Tennyson.10

The specific expression for the nuclear kinetic energy operators
is

where

whereMab is given in eqs 12 and 18 of ref 10. By the appropriate
choices of a few parameters relatingrbi to the atomic positions,
it is possible to represent almost all coordinates used for
calculations on H2O. For orthogonal coordinates such as Jacobi
or Radau coordinates, 1/µ12 ) 0 so thatu V

(2) andu VR
(2) do not

occur, while for bond-length-bond-angle coordinates, all are
required. The volume element is dr1 dr2 dx.

The parametera is defined in eq 12 of ref 10 and controls
the embedding of the body-fixedz-axis. We will considera )
0 (align embedding), where the body-fixedx-axis is alongrb1,
and a ) 1/2 (bisect embedding), where the body-fixedx-axis
bisects the angle betweenrb1 and rb2. The choice of bisect
embedding provides good decoupling between vibration and
rotation, but align embedding results in simplier matrix elements
with fewer singularities. Equations 25, 26, 27, and 28 define
the functionsG̃ij of eq 12.

The symmetric form is given by

and

The bi
n values of eq 19 are as follows:
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(Ĵx - L̂x)
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In this notation, the BODC is justb7
0. The excited states in eqs

33 and 35 are ofA′ symmetry, while those of eq 34 are ofA′′
symmetry.

A subtlety of these equations is as follows. All quantities
occurring in them are either real or are pure imaginary. In our
codes, the factors ofi are not explicitly included. The compli-
cating factor is forGl5, where thei is in the denominator, so
we store-Im[Gl5]/i, while, e.g., for〈n|L̂y|0〉, the i is in the
numerator, and we storeIm[〈n|L̂y|0〉]/i. In b1

n, b2
n, b3

n, andb7
n, the

factors i/i ) 1 occur, but inb5
n, some terms havei in the

denominator and some havei in the numerator, and it is
necessary to put in the extra-1 factor for theGl5 terms. A
second complication occurs in eq 23. Sinceb5

n is pure imagi-
nary, and, e.g.,b3

n is real, the correction multiplyingJy
† ∂/∂x is

purely imaginary, as isG35. But G35 containsi in the denomina-
tor, while the correction containsi in the numerator, so it is
necessary to subtract the correction. Another interesting feature
is that the matrix elements of the term involvingJy (l ) 7, m )
5) exactly cancel the term involvingJy

† (l ) 5, m ) 7).
A valuable experimental parameter which gives a measure

of rotational nonadiabaticity is the rotationalg factor. Experi-
mentally, this is determined by the response of the molecule to
magnetic fields. A useful compilation of rotationalg factors is
given in the paper of Flygare and Benson.12 The rotationalg
factors are defined as13

with

where Mp is the proton mass,me the electron mass,IRR a
component of the moment of inertia tensor,Zj the nuclear charge
of atom j, andBj and Cj are the non-R Cartesian coordinates
for atom j. The nuclear contribution to theg factor is
straightforwardly computed, and the electronic contribution
involves some of the same quantities that are required for the
nonadiabatic correction.

III. Electronic Matrix Elements

We will evaluate the required electronic matrix elements using
a modified version of Molpro2000.1.14 We have carried out the
modifications in two stages. In the first stage, we evaluate the
BODC using the MCSCF code and DDR procedure in Molpro.
In the second stage, we included a single-excitation CI code to
evaluate the nonadiabatic corrections using a SCF description
of the ground state.

In general, it is necessary to evaluate the first-order matrix
elements〈n|L̂R|0〉 and 〈n|∂/∂y|0〉 and the second-order matrix
elements〈n|L̂RL̂â|0〉, 〈n|L̂R ∂/∂y|0〉, 〈n|∂2/∂y2|0〉, 〈n|∂2/(∂y∂z)|0〉,
and〈n|u mp|0〉, wherey andz are some vibrational coordinate.
The first-order matrix elements have only one-electron contribu-
tions, while the second-order matrix elements have both one-
and two-electron contributions. As distributed, Molpro2000.1
evaluates〈n|L̂R|0〉, 〈n|L̂RL̂â|0〉, and the one electron part of
〈n|u mp|0〉. It claims to also evaluate〈n|∂/∂y|0〉, but the finite
difference procedure does not do that correctly. It is fairly

straightforward to extend the program to evaluate these matrix
elements correctly, as well as to compute the remaining
quantities.

Consider〈n|u mp|0〉. The one-electron part is just the matrix
element of the electron kinetic energy divided by the total
nuclear mass. The two-electron part is easily obtained by
modifying the MCSCF properties code to treat the velocity
operators in the same way it treats LR when computing
〈n|L̂RL̂R|0〉. The one-electron velocity operator integrals are
already available in Molpro2000.1.

Next, consider the derivative〈n|∂2/∂y2|0〉. We will evaluate
this numerically using a modified version of the DDR code in
Molpro2000.1. In the DDR procedure, Molpro evaluates the
nonadiabatic coupling matrix element〈n|∂/∂y|n′〉 for n * n′ by
a finite difference. We only consider the central difference
formulas. Then the DDR procedure uses

where Tr means trace,M is the number of electrons,γnn′ is the
transition density between statesn andn′, Sis the overlap matrix
in the atomic orbital (ao) basis,V is the molecular orbital (mo)
eigenvector, and the superscript denotes numerical differentiation
with respect toy. Specifically

whereγnn′(y,y + ∆) is the transition density computed using
the mo eigenvectors fromy, bra (n) configuration interaction
(CI) coefficients fromy, and ket (n′) CI coefficients fromy +
∆

whereS(y,y+∆) is the overlap matrix with bra ao basis functions
at y and ket basis functions aty + ∆, and

whereV(y) are the mo eigenvectors aty. Thus, one carries out
calculations at three geometries to get the orbitals and CI
coefficients and then uses existing code to computeS(y,y(∆)
and γnn′(y,y(∆). From this, the DDR code generates the full
derivative. In actuality, MOLPRO2000.1 follows a slightly
different procedure. First, when using the central difference
formula, it also requires the overlap, etc., with the reference
geometry, but these terms all cancel out. Second, subroutine
OVLADR incorrectly assumes thatSy and SVyVTS are skew
symmetric, and so it attempts to reduce the error in the
calculation by zeroing the diagonals and averaging over the
absolute values of the off diagonals. This error is small for
multiconfiguration wave functions since the CI contribution (the
first term in eq 39) dominates, but for SCF wave functions,
this error is catastrophic.

To compute the second derivative we need, we carried out
three modifications. First, we forced the CI code to save the
transition density computed whenn ) n′. Second, we computed
the one electron contribution to the derivative via

where

gRR ) gRR
nuc + gRR

elec (36)

gRR
nuc )

Mp

IRR
∑

j

Zj(Bj
2 + Cj

2) (37)

gRR
elec)

2Mp

meIRR
∑
n>0

|〈0|L̂R|n〉|2

E0 - En

(38)

〈n| ∂∂y|n′〉 ) Tr(γnn′
y S)/M + Tr(γnn′S

y) + Tr(γnn′SVyVTS) (39)

γnn′
y ) [γnn′(y,y + ∆) - γnn′(y,y - ∆)]/(2∆) (40)

Sy ) [S(y,y+∆) - S(y,y-∆)]/(2∆) (41)

Vy ) [V(y+∆) - V(y-∆)]/(2∆) (42)

〈n| ∂
2

∂y2|0〉
1e

) Tr(γn0
yyS)/M + Tr(γn0S

yy) + Tr(γn0SVyyVTS) +

2Tr(γn0
y Sy) + 2Tr(γn0

y SVyVTS) + 2Tr(γn0S
yVyVTS) (43)
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etc. Finally, we computed the two-electron contribution

whereδij,lm
n0(2) is the two-particle density in the mo basis, which

is computed by the MCSCF code, but not saved, and

We modified the MCSCF code to pass the two-particle density
matrix to the DDR code. It should be noted that the MCSCF
code computes the two-particle density matrix in the mo basis
of the last iteration. Thus, it is necessary to call the MCSCF
code twice if one uses different orbitals for subsequent steps,
e.g., natural orbitals.

To compute the mixed second derivative∂2/∂y∂z, we make
four calculations at (y+∆,z+∆̃), (y-∆,z+∆̃), (y+∆,z-∆̃), and
(y-∆,z-∆̃). Then we can use the formula

and

with

etc.
To evaluate the mixed angular momentum derivative operator,

we can use essentially the same procedures, except now we need
matrix elements such asLR(y,y+∆). It is easy to modify the
code that evaluates the overlap matrixS(y,y+∆) to return
LR(y,y+∆) instead. Then it is straightforward to compute

and

where

Thus, we can evaluate the BODC for any wave function that
we can get out of the MC-SCF code. In practice, since all the
finite difference formulas have errors proportional to even
powers of the stepsize, we carry out calculations at two stepsizes
and use Richardson extrapolation15 to improve the results.

We initially tried using this same procedure to compute the
nonadiabatic correction functions but ran into problems. Specif-
ically, as formulated, we need a sum over excited states, and
doing a state averaged MCSCF for each level becomes very
expensive and is hard to ensure a good description of the ground
state in the presence of the excited states. There also is the issue
of how many states are required for convergence, and curve
crossing as a function of geometry. Thus we think that a reliable
procedure will (i) optimize the ground state without reference
to excited states and (ii) include all excited states. The simplest
example of this is to use a SCF description of the ground state
and a single-excitation CI description of the excited states. We
have written a program to evaluate all the required matrix
elements for a single-excitation CI from a closed shell SCF wave
function using the formulas given in ref 18.

In our calculations on H2+,3 we found that it was important
to include diffuse basis functions when computing the excited
states; thus, we use the augmented basis functions of Duning
and co-workers.16 Also note that the excited states are not given
accurately by these basis sets since they are optimized for the
ground state, but the ground-state wave function response seems
to be computed accurately since all matrix elements involve
the ground state.

IV. Results

We take the atomic mass of H to be 1.007 825 032 1 u and
the atomic mass of O to be 15.994 914 622 1 u, and we convert
the atomic mass to atomic units using the relation 1me )
5.485 799 11× 10-4 u. We then subtracted off Zme to get the
nuclear mass. The conversion factor from atomic units to cm-1

units was computed from the speed of light, 299 792 458 M/s,
Planck’s constant, 6.626 068 76× 10-34 J s, and the factor 1Eh

) 4.359 743 81× 10-18 J, all which were obtained from the
NIST web page http://physics.nist.gov.

A. H2. We take the accurate H2 potential and BODC from
Table 2 of Schwartz and LeRoy.17 This potential includes
relativistic and radiative corrections.

We carried out calculations of the nonadiabatic correction
for H2 for 31 bond lengths, covering 0.4-10 Å. At small bond
lengths, the spacing was 0.1 Å. These calculations used the aug-
cc-pVTZ basis set and gave the SCF BODC as well as the
nonadiabatic corrections.

The SCF PES was used to compute the derivatives in eq 22.
We also calculated the BODC using CASSCF wave functions
at these same geometries. These calculations used the cc-pVTZ
basis set. Several different active spaces were used, and these
involved different number of Ag, B3u, B2u, and B1u orbitals. The
orbitals in the active space were chosen by looking at the
occupation numbers of the natural orbitals from a larger
calculation at the equilibrium geometry. In our vibrational
calculations, we interpolated the corrections using the nine-point
Lagrangian interpolation of the correction timesR4. We solved
for the vibrational energy levels using a finite basis expansion
of the type described in the appendix of ref 19.

In Table 1, we give the adiabatic corrections to the bound
vibrational levels for nonrotating H2 computed using the BODC
from different sources. We compare the accurate results with

γn0
yy ) [γn0(y,y+∆) + γn0(y,y-∆) - 2γn0(y,y)]/∆2 (44)

〈n| ∂
2

∂y2|0〉
2e

) ∑
ij
∑
lm

δij,lm
n0(2) Mij

y Mlm
y (45)

My ) VTSyV + VTSVy (46)

〈n| ∂
2

∂y∂z|0〉
1e

) Tr(γn0
yzS)/M + Tr(γn0S

yz) +

Tr(γn0SVyzVTS) + Tr(γn0
y Sz) + Tr(γn0

y SVzVTS) +

Tr(γn0S
yVzVTS) + Tr(γn0

z Sy) + Tr(γn0
z SVyVTS) +

Tr(γn0S
zVyVTS) (47)

〈n| ∂
2

∂y∂z
|0〉

2e
) ∑

ij
∑
lm

δij,lm
n0(2) Mij

y Mlm
z (48)

γn0
yz ) [γn0(y+∆,z+∆̃) - γn0(y+∆,z-∆̃) -

γn0(y-∆,z+∆̃)+ γn0(y-∆,z-∆)]/(4∆∆̃) (49)

γn0
y ) [γn0(y+∆,z+∆̃) - γn0(y-∆,z+∆̃) +

γn0(y+∆,z-∆̃) - γn0(y-∆,z-∆̃)]/(4∆) (50)

γn0
z ) [γn0(y+∆,z+∆̃) - γn0(y+∆,z-∆̃) +

γn0(y-∆,z+∆̃) - γn0(y-∆,z-∆̃)]/(4∆̃) (51)

〈n|L̂R
∂

∂y|0〉1e
) Tr(γn0

y LR) + Tr(γn0LR
y) + Tr(γn0LRVyVTS)

(52)

〈n|L̂R

∂

∂y|0〉
2e

) ∑
ij
∑
lm

δij,lm
n0(2) Mij

yLRlm (53)

LR ) VTLRV (54)
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those obtained using the BODC computed using the aug-cc-
pVTZ basis set at the SCF level and the BODC computed using
the cc-pVTZ basis set using CASSCF wave functions with
different active spaces. Since the SCF wave function does not
dissociate properly and the zero of energy for the calculations
including the BODC is most naturally taken to be at dissociated
atoms, for the purpose of this comparison, we have arbitrarily
set the zero energy so that the adiabatic correction for the ground
vibrational level is zero. The SCF BODC significantly over-
estimates the accurate adiabatic correction. For the fundamental,
it gives a correction about 50% too large, and furthermore, it
clearly breaks down very badly as the amount of vibrational
excitation increases. In contrast, the results from the CASSCF
wave functions are always qualitatively correct, and as we
increase the size of the active space, the results become closer
to the accurate results. The largest calculation agrees quite well
with the accurate results all the way up to dissociation. This
clearly shows that the reason for the poor performance of the
SCF method is its lack of electron correlation. The relative errors
from the CASSCF calculations are more constant than the
relative errors from the SCF calculations, so scaling can improve
the results.

We now consider the prediction of nonadiabatic effects. The
rotational g factor of H2 as determined from experiment is
0.882 91,12 and atR0, we compute 0.9105 using the aug-cc
pVTZ basis using single-excitation CI. This means that we
recover about 77% ofgRR

elec, which is the rotational nonadiabatic
effect (see eq 36). In Table 2, we give the nonadiabatic
corrections to the bound vibrational levels for nonrotating H2

computed using the aug-cc-pVTZ basis using single-excitation
CI. We use the accurate BODC in these calculations. We find
that we obtain from 79% to 89% of the accurate result. Notice
that in contrast to the BODC computed at the SCF level, the
nonadiabatic correction behaves reasonably well all the way up
to dissociation. If we scale the corrections by the factor 1.14,
the errors in the transition frequencies for the low-lying levels
are only a few times 0.01 cm-1. This is a very encouraging
result.

B. H2O. We carried out calculations of the nonadiabatic
corrections at a set of geometries generated as follows. We
generated a grid withΘ running from 70° to 150° in steps of
10° and withR1 andR2 running from 0.825 to 1.225 Å in steps
of 0.05 Å, whereRi are the two OH bond lengths andΘ is the
HOH angle. We then retained only those points satisfyingR1

g R2, and the energy computed fromVemp from ref 19 is less

than 11 000 cm-1 higher than the minimum. For the ro-
vibrational calculations, we interpolated the correction functions
by fitting them using

with i, j e 8, k e 8 - i - j, andr̃ andx̃ parameters being near
in value to the equilibrium values. Some correction functions
are symmetric with respect to interchangingr1 and r2, while
some are antisymmetric, and when we use Jacobi coordinates
or align embedding, some are asymmetric. In the former cases,
we augment the data forR1 g R2 with data for R1 < R2

constructed from the appropriate symmetry relations. In the later
case, we carried out calculations forR1 < R2. The coefficients
Cijk were determined by least-squares fitting, and the points were
equally weighted. It should be noted that the expansion we use
will not extrapolate properly. This is not a problem for the
present results, for we evaluate the matrix elements of the
corrections using the basis optimized for the BO approximation,
so our functions do not sample regions where the expansions
break down.

For this work, we take the BO PES to be the one denoted
V5Z + ∆Vcore from ref 19. This is the most accurate purely ab
initio PES available. We ignore relativistic effects. We use the
aug-cc-pVTZ basis set to compute the nonadiabatic correction
functions and the SCF BODC. The oxygyn 1s-like orbital was
always doubly occupied in the single-excitation CI calculations.
We have also computed the BODC at the CASSCF level. Here
we use the cc-pVTZ basis set, and the active space consists of
eight electrons in 6a′ and 2a′′ orbitals. This is the same active
space used to computeV5Z. In Table 3, we give the various
quantities that go into the BODC computed at the vibrationally

TABLE 1: Adiabatic Corrections to the Vibrational Energy
Levels of H2 (in cm-1)

CASSCF

V accurate SCF 1,0,0,la 2,0,0,1a 2,1,1,1a

0 0.00 0.00 0.00 0.00 0.00
1 -1.41 -2.03 -1.09 -1.24 -1.39
2 -2.57 -3.94 -1.93 -2.22 -2.52
3 -3.48 -5.75 -2.51 -2.94 -3.38
4 -4.12 -7.46 -2.83 -3.39 -3.96
5 -4.49 -9.11 -2.90 -3.56 -4.27
6 -4.58 -10.69 -2.70 -3.47 -4.29
7 -4.38 -12.22 -2.24 -3.10 -4.03
8 -3.88 -13.71 -1.55 -2.46 -3.49
9 -3.10 -15.18 -0.63 -1.59 -2.70

10 -2.04 -16.62 0.49 -0.49 -1.69
11 -0.76 -18.05 1.77 0.78 -0.50
12 0.70 -19.42 3.20 2.20 0.82
13 2.34 -20.57 4.77 3.74 2.25
14 4.21 -20.65 6.55 5.46 3.83

a Number of Ag, B3u, B2u, and B1u orbitals in the active space.

TABLE 2: Nonadiabatic Corrections to the Vibrational
Energy Levels of H2 (in cm-1)

V nonada ratiob errc scaled errd

0 -0.44 0.883 0.06 -0.003
1 -1.18 0.885 0.15 -0.013
2 -1.84 0.880 0.25 -0.007
3 -2.41 0.872 0.35 0.015
4 -2.90 0.863 0.46 0.055
5 -3.31 0.852 0.58 0.112
6 -3.64 0.839 0.70 0.186
7 -3.87 0.825 0.82 0.278
8 -4.00 0.810 0.94 0.380
9 -4.02 0.794 1.04 0.478

10 -3.90 0.781 1.09 0.545
11 -3.61 0.789 0.97 0.461
12 -3.11 0.765 0.95 0.518
13 -2.34 0.802 0.57 0.248
14 -1.18 0.820 0.26 0.093

a Ab initio prediction from the present work.b Ratio between column
2 and accurate results.4 c Difference between column 2 and accurate
results.d Difference between column 2 scaled by 1.14 and accurate
results.

TABLE 3: Components of BODC for H2O at the
Vibrationally Averaged Geometry

CASSCFa SCFb

〈0|u mp|0〉 464.6558 cm-1 463.3701 cm-1

ΣRâG̃Râ〈0|L̂RL̂â|0〉 57.8320 cm-1 55.7876 cm-1
〈0|∂2/∂θ2|0〉 -0.55769 -0.53541
G̃33〈0|∂2/∂x2|0〉 20.5443 cm-1 19.7233 cm-1

〈0|∂2/∂r1
2|0〉 -0.49480 -0.46135

G̃11〈0|∂2/∂r1
2|0〉 29.5715 cm-1 27.5726 cm-1

total 602.1752 cm-1 594.0261 cm-1

a Using the cc-pVTZ basis.b Using the aug-cc-pVTZ basis.

∑
ijk

Cijk(r1 - r̃)i(r2 - r̃)j(x - x̃)k (55)
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averaged geometry ofR0 ) 0.974 Å andΘ0 ) 104.2°. This
was determined from theV5Z + ∆VcorePES. The dominant term
in the BODC is the mass polarization term. In Table 4, we give
the nonadiabatic correction for Radau coordinates computed at
the vibrationally averaged geometry. In all calculations, the
derivatives in eq 22 were computed from the SCF PES. In Table
1S we give our calculated values of the CASSCF BODC, and
in Table 2S, we give a fit to the CASSCF BODC in terms of
R1, R2, andΘ.

In Table 5, we give results from various BODC. Our ro-
vibrational calculations are well converged and use the algorithm
of ref 19; for simplicity, the hyperspherical transformation is
not performed. We label the vibrational levels by local mode
quantum numbers. We see good agreement between the results
we obtain using the BODC reported by Tennyson and co-
workers7 and our SCF BODC. When we go to the CASSCF
BODC, we see good agreement with the SCF results for low-
lying bending overtones but sizable disagreement for stretching
overtones. At first sight, this seems unreasonable, but compari-
son with Table 1 shows that the shift between SCF and CASSCF
for the stretches is very similar to what we observed for H2.
Thus, it appears that the SCF BODC provides a good description
of the bending motion for low-lying levels but does a very poor
job on stretching levels. Further convergence tests are required
to ascertain the accuracy of the present CASSCF BODC.

We now turn to nonadiabatic corrections. A big issue for H2O
is verifying that we are doing the calculations properly. To
ensure this, we have carried out calculations using several
different kinetic energy operators. We performed separate
electronic structure calculations and fits for each choice. We
used the H+ OH Jacobi coordinates with align embedding,
Radau coordinates with both align and bisect embedding, and
bond-length-bond-angle coordinates with bisect embedding. We
carried out calculations for total angular momenta 0 and 10. If
all things are done properly, all choices of coordinates should
give the same results within the accuracy of second-order
perturbation theory. After each programming error and proce-
dural deficiency was corrected and the level of agreement
improved, it was tempting to consider the program correct.
However we continued exploring, and the final result was very
small differences. The calculations with Jacobi and Radau
coordinates gave the same results to within their convergence
errors. The differences between the calculations using bond-
length-bond-angle coordinates and Radau coordinates were
small but not zero. Our final calculations showed apparently
random differences of a few 0.0001 cm-1 for stretching levels,
which is very satisfactory. For bending levels, the differences
ranged from 0.001 to 0.005 cm-1 and were more systematic.
We have not been able to identify the source of this difference,

but since it is negligible in practice, we will assume our codes
are working properly. The difference forJ ) 10 between align
and bisect embedding is essentially zero.

The rotationalg factors that we compute at the vibrationally
averaged geometry are 0.721, 0.683, and 0.658, which can be
compared to the experimental values12 of 0.718, 0.657, and
0.645. The agreement is very satisfactory, with our calculations
recovering from 91% to 99% of the electronic contribution. The
component with the smallest experimental uncertainty is the
y-component, and if we scale our results by 1.10, we match
this value. We will assume that this same scaling is required
for all the nonadiabatic correction functions.

In the final columns of Table 5, we give the nonadiabatic
corrections we compute for the low-lying vibrational levels of
H2O. We give three sets of results. In the first column, we give
the accurate results obtained using the expansion of eq 55. In
the next column, we assume that the functions are constant and
use the results in Table 6. In the final column, we neglect the
cross derivatives. First, consider the accurate results. We see
that compared to the adiabatic correction, the trends are very
different for bending overtones and stretching overtones. The
nonadiabatic correction is small for the bending overtones, while
the adiabatic correction is large and negative. In contrast, the
nonadiabatic correction is much larger for stretching overtones,
and the adiabatic correction is smaller and positive. In fact, the
sum of the nonadiabatic correction and the adiabatic correction
is quite small for the stretching overtones. Next, consider the
effects of assuming the nonadiabatic corrections are constant.
The agreement with low-lying levels is very good but deterio-
rates somewhat as the amount of excitation increases. Finally,
consider the last column. These results are nearly in as good
agreement with the accurate results as the previous column.
Thus, it is easy to include these effects in existing codes by
simply scaling the terms in the kinetic energy operator.

In Table 6, we give the adiabatic and nonadiabatic corrections
for the rotational levels forJP) 10+ for the ground vibrational
level. The adiabatic correction function is from the CASSCF
calculation using the cc-pVTZ basis, and the nonadiabatic
corrections are from the CI singles calculation using the aug-
cc-pVTZ basis, scaled by 1.10. The adiabatic and nonadiabatic
corrections to the rotational levels are about the same size on
average, but the adiabatic correction is both positive and
negative, while the nonadiabatic correction is always negative.

It thus seems important to include these effects if high (<1
cm-1) accuracy is required. How do we then rationalize the
results of our previous work,19 where we obtained about 0.05
cm-1 accuracy without including nonadiabatic effects? There
are several possibilities for this. One is that there is not sufficient
experimental data so that the fitted PES can behave nonphysi-
cally to make up for the deficiency. This would greatly reduce
the predictive power of the PES. Another possibility is as
follows. If we neglect the cross terms between vibrational
coordinates, and assume that the corrections are constant, as
we tried above, we can remove the nonadiabatic part from the
vibrational kinetic energy using coordinate scaling and wave
function transformation. This would mean, however, that the
PES would have very complex isotope dependence, and
furthermore, the rotational part of the kinetic energy would be
modified. Thus, it should be possible to obtain good results for
a single isotope considering purely vibrational levels and, if one
is lucky, reasonable results for rotational levels. In contrast, by
explicitly including nonadiabatic effects, we expect to be able
to treat all isotopomers on an equal footing and obtain accurate
predictions for unobserved vibrational and rotational levels.

TABLE 4: Unique Nonadiabatic Correction Functions for
H2O at the Vibrationally Averaged Geometry for Radau
Coordinates, Bisect Embedding (in atomic units)a

-∂/∂r1
†1.0275213× 10-7 ∂/∂r1

∂/∂r2
†3.8808313× 10-9 ∂/∂r1

-∂/∂θ†2.6324533× 10-9 ∂/∂r1

-∂/∂θ†1.4062589× 10-8 ∂/∂θ
-Jx

†9.8205515× 10-9Jx

-Jy
†6.0550853× 10-10 ∂/∂r1

-Jy
†7.3757478× 10-9Jy

-Jz
†1.7082113× 10-8Jz

3.1006092× 10-8 ∂/∂r1

-8.0263252× 10-10 ∂/∂θ
-2.9553018× 10-7

a For these coordinates, the reduced mass equals the proton mass.
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V. Conclusions

We have presented the results of ab initio corrections to the
Born-Oppenheimer PES. We find that the SCF approximation
for the BODC is very poor for stretches. For H2, a modest
CASSCF wave function greatly improves the results. Turning
now to the nonadiabatic corrections, we find that for H2, our
simple CI singles calculations recovers about 77% of the
rotational nonadiabaticity and about 88% of the vibrational
nonadiabaticity. For H2O, we recover from 91% to 99% of the
rotational nonadiabaticity. For diatomics, where there is rigorous
separation between vibration and rotation, we can scale the
vibrational and rotational parts separately and, thus, obtain very
accurate results. For polyatomics, it is no longer possible to
rigorously separate vibration and rotation and scale them
separately. For triatomics, it will be possible to scale the
contributions from excited states of different symmetries (A′
andA′′) separately. For larger nonlinear polyatomics, it will only
be possible to use a single scale factor. Since the scale factor
for H2O is near one, we should be able to obtain reliable results.

We also show that for H2O, assuming that the nonadiabatic
corrections functions are constant and diagonal is a very
reasonable approximation; thus, these effects can be easily

incorporated into existing codes. This makes the ab initio
calculation of the nonadiabatic effects very inexpensive to
implement in practice.

Supporting Information Available: A table giving the
CASSCF BODC correction function for H2O and a table giving
the fit to the CASSCF BODC correction function for H2O. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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TABLE 5: Corrections to the Vibrational Energy Levels of H 2O (in cm-1)

adiabatic correction nonadiabatic correctionb

νb νs BO ZPSTa SCF CASSCF accurate constc diag constd

0 (0,0)+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 (0,0)+ 1597.60 -0.50 -0.50 -0.46 -0.07 -0.07 -0.07
2 (0,0)+ 3157.14 -0.99 -1.00 -0.94 -0.15 -0.14 -0.14
0 (1,0)+ 3661.00 -0.06 -0.05 0.39 -0.70 -0.69 -0.72
0 (1,0)- 3758.63 0.12 0.13 0.62 -0.79 -0.77 -0.74
3 (0,0)+ 4674.88 -1.49 -1.52 -1.46 -0.23 -0.20 -0.20
1 (1,0)+ 5241.83 -0.51 -0.49 -0.01 -0.76 -0.75 -0.78
1 (1,0)- 5336.74 -0.33 -0.31 0.24 -0.87 -0.84 -0.81
4 (0,0)+ 6144.64 -2.02 -2.08 -2.03 -0.30 -0.27 -0.26
2 (1,0)+ 6784.57 -0.94 -0.94 -0.42 -0.84 -0.82 -0.85
2 (1,0)- 6879.72 -0.74 -0.74 -0.16 -0.94 -0.90 -0.87
0 (2,0)+ 7208.80 -0.08 -0.05 0.96 -1.37 -1.35 -1.39
0 (2,0)- 7256.00 0.06 0.09 1.19 -1.43 -1.40 -1.40
0 (1,1)+ 7450.86 0.18 0.21 1.22 -1.57 -1.51 -1.46
5 (0,0)+ 7555.62 -2.65 -2.74 -2.71 -0.37 -0.32 -0.32
3 (1,0)+ 8286.03 -1.38 -1.40 -0.87 -0.91 -0.89 -0.91
3 (1,0)- 8384.72 -1.15 -1.17 -0.58 -1.02 -0.97 -0.94
1 (2,0)+ 8771.71 -0.47 -0.44 0.66 -1.43 -1.40 -1.44
1 (2,0)- 8816.00 -0.33 -0.29 0.88 -1.50 -1.45 -1.45
6 (0,0)+ 8886.34 -3.51 -3.61 -3.63 -0.41 -0.36 -0.36
1 (1,1)+ 9008.72 -0.20 -0.17 0.90 -1.65 -1.56 -1.52
4 (1,0)+ 9738.82 -1.90 -1.96 -1.43 -0.97 -0.94 -0.97
4 (1,0)- 9846.98 -1.58 -1.63 -1.05 -1.09 -1.03 -1.00
7 (0,0)+ 10105.50 -4.51 -4.62 -4.68 -0.46 -0.39 -0.38

a Using the BODC of ref 7.b Using CASSCF BODC and nonadiabatic correction functions multiplied by 1.10.c Assuming correction functions
are constant, with the values taken from Table 4 multiplied by 1.10.d Assuming correction functions are constant, with the values taken from Table
4 multiplied by 1.10, except the cross derivatives are neglected.

TABLE 6: Corrections to the Rotational Energy Levels of
Ground Vibrational Level of H 2O for J ) 10 (in cm-1)

Ka Kc BO BODC nonad

0 10 1114.95 -0.08 -0.21
1 10 1114.97 -0.08 -0.21
2 8 1438.58 -0.15 -0.25
3 8 1446.67 -0.11 -0.25
4 6 1617.18 -0.20 -0.27
5 6 1719.18 -0.02 -0.29
6 4 1875.80 0.09 -0.32
7 4 2054.53 0.22 -0.34
8 2 2254.35 0.36 -0.37
9 2 2471.22 0.50 -0.40

10 0 2701.77 0.65 -0.42
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